Code No.: 22855

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

M.E. (Mech. Engg.) II-Semester Main Examinations, September-2022

Computer Aided Mechanical Design and Analysis

(Advanced Design & Manufacturing)

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

Q. No.	Stem of the question	M	L	CO	PO
1.	List the main parts of a pressure vessel and show them with a sketch.	2	1	1	1
2.	What is Autofrettage of thick cylinders?	2	1	1	1
3.	List the boundary conditions for a simply supported rectangular plate.	2	1	2	1
4.	What is the effect of thermal stresses on plates?	2	1	2	2
5.	Define the terms i). Fracture Resistance and ii). Critical stress Intensity Factor	2	1	3	1
6.	List the two important features of the J-integral.	2	1	3	1
7.	Define i). Orthogonal matrix and ii).Hermitian matrix	2	1	4	1
8.	What is the principle involved in Component Mode Synthesis?	2	1	4	2
9.	Distinguish between Direct integration and Mode super position methods.	2	2	5	2
10.	Define Raleigh's damping.	2	2	5	1
	Part-B (5 \times 8 = 40 Marks)				
11. a)	Describe the variation of tangential and radial stresses in thick cylinders subjected to internal pressure.	5	2	1	3
b)	Explain the effect of thermal stresses in thick cylinders.	3	2	1	2
12. a)	Develop the expressions for maximum deflection and maximum bending stress in a constant thickness plate when it is subjected to uniformly distributed load with clamped edges.	4	4	2	4
b)	Deduce the differential equation for deflection curve when a flat plate is subjected to bending in two perpendicular directions.	4	3	2	3

13. a)	Determine the energy release rate of a DCB specimen using change in strain energy approach for constant displacement.	4	3	3	3
b)	Prove that J-Integral is path independent.	4	4	3	4
14. a)	Evaluate the Eigenvalues and associated eigenvectors of the matrix [A] given by	4	3	4	3
	[A]: $\begin{pmatrix} 2 & 1 & -1 \\ 1 & 4 & -1 \\ -1 & -1 & 6 \end{pmatrix}$				
b)	Explain the Subspace iteration method of modal analysis.	4	2	4	1
15. a)	Solve the problem $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \{\ddot{q}_t\} + \begin{pmatrix} 2 & 2 \\ 2 & 6 \end{pmatrix} \{q_t\} = \{F(t)\}$ with initial	5	4	5	4
	conditions $q_0 = \binom{1}{0}$; $\dot{q}_0 = \binom{0}{0}$; and $F(t) = \binom{0}{0}$, using Newmark method and choose $\Delta t = 0.25$.				
b)	What are the sequential steps involved in Mode super position method.	3	3	5	2
16. a)	What are the significant factors to be considered in design of a pressure vessel?	4	2	1	1
b)	A rectangular plate having dimensions of 600 mm x 500 mm x 12mm is simply supported at the ends. It is subjected to a uniformly distributed load of 2 N/mm ² . Estimate the deflection of the plate at the middle point, given that $E=2 \times 10^5 MPa$ and $\gamma=0.3$.	4	3	2	3
17.	Answer any <i>two</i> of the following:				
a)	Define and sketch the Modes of fracture failure.	4	2	3	2
b)	List the properties of eigen values and eigen vectors.	4	2	4	3
c)	Discuss the conditions for stability in integration methods.	4	3	5	2

M : Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

i)	Blooms Taxonomy Level – 1	20%
ii)	Blooms Taxonomy Level – 2	35%
iii)	Blooms Taxonomy Level – 3 & 4	45%
